If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2+d-9=0
a = 9; b = 1; c = -9;
Δ = b2-4ac
Δ = 12-4·9·(-9)
Δ = 325
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{325}=\sqrt{25*13}=\sqrt{25}*\sqrt{13}=5\sqrt{13}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{13}}{2*9}=\frac{-1-5\sqrt{13}}{18} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{13}}{2*9}=\frac{-1+5\sqrt{13}}{18} $
| 3(w+3)+w=2(w+1)+3 | | 101x=51 | | -q5=1 | | x+2.6=5.9 | | 8k^2+6=-40 | | 7.5x=56.25 | | v+4.8=9.87 | | 6x+5=6+4x | | 1/2w-1/3=-2/5 | | 5-x=4x-4x | | 51+6a-3=180 | | 5x+5=6+3x | | 2(2-3x)=-13+2x-15 | | 7(x+10)=24 | | 42+11d=273 | | -6-4x+2x=-22 | | 7(2x+10)=24 | | -7=p-11 | | 21a-14=49 | | -5(u+7)=-9u+1 | | (x+12)^2(x-12)=169 | | 10×(x-5)=15x+5 | | 2x-5=6x3 | | 160=-8n+8 | | 9(v+2)=7v+24 | | 24x^2-48x+18=0 | | 4(v+3)=9v+32 | | 8w=56+w | | (8+3i)-(2-I)=I | | 17d–8d–4=5 | | 3x+256=5x+384 | | 0.5x^2+0.75=0.25x |